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Business and Activity Section 
 

(a) Contract Activity  

 

No contract modification was made or proposed in this quarterly period. No materials were pur-

chased during this quarterly period. 

 

(b) Status Update of Past Quarter Activities  

 

In this reporting period, the research team performed literature review, and made great progress 

toward achieving the technical objectives including: 

 

(1) Developing heterogeneous data-driven risk identification models (Task 1.2). 

(2) Designing methods for spatiotemporal matching of interacting threats (Task 2.2) 

 

In this reporting period, the research team made progress on educational activities, including in-

volving three PhD students and several unpaid master and undergraduate students at Mines and 

MSU, and adapting the research topics from this project with undergraduate research programs 

(e.g., the Mines Undergraduate Research Honor Thesis) and MSU (e.g., ENSURE program).  

 

(c) Cost Share Activity 

 

PI Zhang used his 11.29% yearly effort as the in-kind cost share to work on the project at the 

Colorado School of Mines. Co-PI Yiming Deng used his 6.07% yearly effort as the in-kind cost 
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share to work on the project at the Michigan State University. The cost share was used following 

the approved proposal and no modification was made. 

 

(d) Performed Research: Developing and Evaluating New Methods for Low-Variance Inter-

acting Threats Assessment 

 

1. Progress on Task 1.2: heterogeneous data-driven risk identification models 

 

1.1 Mixture Regression & Transfer learning  

 

Multi variate function estimation is effective to determine the growth of the defects when the de-

fects are not interacting with each other.  How-ever for setting up a regression model we can 

consider the response 𝑦 from grid points containing the locations as grid points.  

 

              𝑦𝑙 = 𝑓(𝑥1𝑖, 𝑥2𝑗) 𝑤ℎ𝑒𝑟𝑒 ,  𝑖,  𝑗 = 1, ⋯ , 𝑁 𝑎𝑑𝑛𝑑 𝑙 = 21(𝑖 − 1) + 𝑗                    (1) 

 

The function  𝑓  is modelled as a mixture of regression where𝐾 represent the number of mix-

tures: 

 

𝑓(𝑥1𝑖, 𝑥2𝑗) =  ∑ 𝑃𝑘 .    𝑁( 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥1𝑖 + 𝛽2
(𝑘)

𝑥2𝑗 , 𝜎𝑘
2)𝐾

𝑘=1             (2) 

 

For each mixture model, the intensity is modeled by a linear surface ( 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥1𝑖 +

𝛽2
(𝑘)

𝑥2𝑗 , 𝜎𝑘
2) with aberrations having variability 𝜎𝑘

2. If 𝜎𝑘
2 is low then there is not much variabil-

ity, which will be the case when there are no defects in the vicinity. For areas near defects, the 

average intensity ( 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥1𝑖 + 𝛽2
(𝑘)

𝑥2𝑗 , 𝜎𝑘
2) will be different and leading to the points in 

those areas being from other mixing densities[4].  Also, for point adjoining defects the variance 

𝜎𝑘
2 will be large. The mixing weight 𝑃𝑘 can be made to depend on(𝑥1𝑖, 𝑥2𝑗)  . While computing, 

for each point (𝑥1𝑖 , 𝑥2𝑗)  we find out the posterior probabilities 𝜋̂𝑘  (𝑥1𝑖, 𝑥2𝑗)  and based on their 

value can classify each point to either defective or non-defective areas. If the defective area is 

not very large, then it is not a harmful defect. 

For simplicity, we are using K=2. So, there are only two segments. Now the flux in each segment 

is modelled by a Normal Regression Model. 

 

• Intensity is modelled by a linear surface 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥1𝑖 + 𝛽2
(𝑘)

𝑥2𝑖 having variability𝜎𝑘
2. 

• 𝜎𝑘
2 being low means no defect in the vicinity: as there are spikes in the flux in defective or 

defect adjoining areas.  

• For areas near defects, the average intensity 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥1𝑖 + 𝛽2
(𝑘)

𝑥2𝑖 will be different and 

leading to point in those areas being from other mixing densities. 

• If two grid points are close the difference in average flux for them in the model is not huge. 

Thus, spatial relation among points are leveraged. 

 



3 

 

 

 
Figure 1: Mixture Regression Model 

 

The objective is to estimate the mixing weights 𝑃𝑘 as well as the regression coefficients 

𝛽0
(𝑘)

,  𝛽1
(𝑘)

,   𝛽2
(𝑘)

 and regression error 𝜎𝑘
2. Challenges include no closed form solutions exist. We 

do not know the probability that the grid point (𝑥1𝑖, 𝑥2𝑗) corresponding to l=21(i-1)*j belongs to 

each of the k regression model. 

 

• If we knew each of their probabilities then to estimate the regression coefficients we 

would be just doing ordinary regression for each of the k models separately abet now with 

weights; The weights signify the probability/amount of membership of each point in each 

model. 

• Denote the weights by 𝒑𝒍𝒌: Prob( the l th point belongs to the k th normal model); 

l=1,..,21^2; k=1,…,K  

• Consider a weight matrix 𝑾𝒌  of 441*441 dimensions with {𝒑𝒍𝒌: l=1,…,441} on the di-

agonals.  

• As the weights are unknown, we use an iterative algorithm. It is called EM algorithm.  

 

Expectation Maximization Algorithm and it’s details:  

 

• EM is an iterative method to find the maximum likelihood estimates in mixture modeling. 

It increases the likelihood in each step and there is a lot of literature on the convergence 

properties of these algorithms[5] 

• It comprises of two steps. First consider the M-step. 

• In the M-step the parameters 𝛽, 𝜎 are updated for a particular fixed weight matrix 𝑊𝑗
(𝑡)

. 

• Once W is fixed the parameters for each model are optimized by weighted least squares 

• 𝛽𝑗
(𝑡+1)

= (𝑋𝑇𝑊𝑗
(𝑡)

𝑋)−1𝑋𝑇𝑊𝑗
(𝑡)

𝑦 

• 𝜎𝑗
2(𝑡+1)

=
‖𝑊

𝑗

1
2⁄ (𝑡)

(𝑦−𝑋𝑇𝛽𝑗
(𝑡+1)

)‖
2

𝑡𝑟(𝑊𝑗
(𝑡)

)
 

• where ‖𝐴‖2 = 𝐴𝑇𝐴 and 𝑡𝑟(𝐴) means the trace of a matrix 𝐴, 𝑋 is a 441 ∗

3 matrix, 𝛽𝑗  is a vector 3 ∗ 1 and response variable 𝑦 is a vector of length 441. 
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•  𝑊𝑗
(𝑡)

 is identity matrix, the above is ordinary least squares. 

• In the E-step the posterior probabilities i.e the weight values  𝑝𝑙𝑘
(𝑡)

 are updated.  

• Here the  𝑝𝑙𝑘
(𝑡)

 signifies the weight of the lth   response in the jth component. 

• E-step: 𝑝𝑙𝑘
(𝑡)

= [1 + ∑
𝑃

𝑗′
(𝑡)

𝛷(𝑦𝑖|𝑥𝑖
𝑇𝛽

𝑗′ ,𝜎
𝑗′
2 )

𝑃𝑘
(𝑡)

𝛷(𝑦𝑖|𝑥𝑖
𝑇𝛽𝑘,𝜎𝑘

2)
𝑗′≠𝑗 ]

−1

 

• This involves finding normal pdf centered at the predicted value 𝑥𝑖
𝑇𝛽𝑗′  and having vari-

ance 𝜎𝑗′
2. 

• Each of them was found was in the M-step 

• We update likelihood, then the weights and then the mixing weights. 

 

We use these data as representative MFL data pertaining to day 1. Figure 3 shows such data. We 

represent these data in 2D-images for subsequent processing and analysis (see Fig. 2). Then, for 

successive days we randomly increase the size of the defective area and obtain flux reading cor-

responding to it. To produce representative noisy data for these days, we contaminate these MFL 

readings from COMSOL with Gaussian noise of strength 70% at random places. Figure 4 shows 

representative data for 6 days where the defect has grown from 6mm to 1cm from day1 to day 6. 

Also, Day 1 data is much less noisy then data from the subsequent days.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : 2-D Plot of MFL data as locations vary in 𝑥 and 𝑦 axes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: 3D-Plot of MFL data from noiseless Day 1 readings and the bottom one shows a 

larger defect 
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Figure 4: Noisy data on the corresponding days 

 

The steps considered for monitoring the defect growth is as follows:  

 

 
 

While computing, for each point  (𝑥1𝑖, 𝑥2𝑗) we find out the posterior probabilities of defects 

𝜋̂𝐷  (𝑥1𝑖, 𝑥2𝑗)  and based on their value can classify each point to either defective (D) or non-de-

fective (S) areas.  We considered different kinds of defects such as scratches, very small, moder-

ate and large defect sizes. In all these cases we have observed that our function estimation 

matches well with the intensity plots and the defective areas can be recognized when we are ap-

plying the function estimation on the data provided by Day 1 when it is un-affected by noise. We 

use the R package mix tools for fitting these w-mixture regression functions. Figure 5 shows the 

working on a representative day 1 data where the defect is a cube of length 6mm in a 6 cm pipe 

sector. 
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Figure 5: Defect area recognition based on accurate Day 1 readings 

 

Figure 6 shows the defective area identification based on accurate day 1 readings. The defect is a 

cube of 6 𝑚𝑚. On left, we have the MFL data and the fitted function by the two-mixture regres-

sion model in the middle. Based on the thresholding the posterior probabilities at 0.8, the esti-

mated defective scan points are plotted in red. 

 

Now the Day 2 data has been infected with noise. Here mixture regression fails to predict the de-

fect due to presence of high noise. In the below figure the left most figure represent the noisy 

data from Day 2, the next one is the Day 2 data after denoising. The next plot shows the pre-

dicted values based on the two-mixture regression model. Finally, on the extreme right we have 

in red the detected defect points demarcated in red. The 2-mixture regression model has com-

pletely failed to detect the true defect area. 

 

 
 

Figure 6: Mixture regression fails due to high noise 

 

Transfer Learning:  

 

On Day 1 points with posterior probabilities of defect greater than 0.8 are considered in the de-

fect area. In Day 2 we mark the neighborhood of defective points. The defect can spread here. 

But, the scan points outside are safe and are marked as non-defect area. In the below figure based 

on the posterior probabilities obtained from mixture regression of Day 1 the white space within 

the yellow ones is the defect and the green ones the neighboring points of the defect [6]. 
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Figure 7: Defect area recognition and neighborhood of the defective area based on Day 1 

 

As Day 2 data is noisy unlike Day 1, hence we do the following: Project Day 1 locations to Day 

2 Noisy MFL and flag its neighborhood. 

 

Regress: 

• Day 2 MFL values in red defect area by Day 1 defect area MFL 

• Day 2 MFL values in yellow area by Day 1 non-defect area MFL 

And replace 

• Day 2 MFL values in red area by its predicted value from regression. 

• Day 2 MFL values in yellow area by its predicted value from regression. 

 

 
Figure 8: Schematic of projection of Day1 location on Day2 

 

This will make the data smooth in those parts by reducing noise. Now on the transformed data on 

Day 2 we know that every scan point in the neighboring data has MFL values of Day 2. They are 

not changed. We also do not know whether these points are defect or not. We fit a 2-mixture re-

gression model on transformed data. For scan points in the neighboring area, we call it defect if 

its posterior probability of belonging to the defect model is greater than 0.8. Else we consider 

this as non-defect. 

 

The algorithm is a s follows:  

 

Let 𝐷1 denote the location of defect scan point at day 1: 
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                 𝐷0 = {(𝑥𝑖, 𝑦𝑖) ∶   𝜋̂𝐷  (𝑥1𝑖, 𝑥2𝑗)   ≥ 0.8}             (3) 

 

Consider  𝑍1 = {𝐼1(𝑥1𝑖, 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝐷1} as the set of Day 1 MFL values on the defect scan 

points. Let 𝑍2 = {{𝐼2(𝑥1𝑖, 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝐷1} be the set of Day 2 MFL values on the same 

scan points which were judged in the defective area on Day 1. Note, that 𝑍2 is very noisy. Hence 

it is important to denoise 𝑍2. This can be done by fitting a linear model on 𝑍2 based on 𝑍1 val-

ues. 

 

      𝑍2𝑘 = 𝛼2 + 𝛽2𝑍1𝑘 + 𝜎2𝜉𝑘     (4) 

 

Where 𝐾 = 1,2, … . , |𝐷1|   and 𝛼2, 𝛽2, 𝜎2 are intercept, slope and standard deviation parameters 

and {𝜉𝑘: 𝑘 ≥ 1} are iid gaussian noise. We find out the least square coefficients 𝛼2̂, 𝛽2̂, 𝜎2̂ and 

consider the set of predicted value  𝑍2
𝑃 = {𝛼2̂ + 𝛽2̂𝑍1(𝑥1𝑖 , 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝐷1} . Now 𝑍2

𝑃 will 

be much less nosier than 𝑍2. Note that in Day 1, 𝑍2 was well modeled by a linear model and so, 

we can expect 𝑍2
𝑃 which is the denoised version of 𝑍2.got by projecting it on Day 1 MFL values, 

to be also well-modelled by linear model. Consider the neighborhood of the defect points of Day 

1. Let 𝑁1 denote the neighborhood of the scan points in 𝐷1, i.e.: 

 

𝑁1 = (𝑥1𝑖 , 𝑥2𝑗): 𝑚𝑖𝑛(𝑥,𝑦)𝜀𝐷𝑗−1
|𝑥1𝑖 − 𝑥| + |𝑥1𝑗 − 𝑦| < 𝛿}\𝐷1 

 

where 𝛿 is the tuning parameter which is taken as 3 here. 

 

In this neighborhood points 𝑁1 the defect can spread on Day 2. This is the uncertain area. All 

points outside 𝑁1 and 𝐷1 can be considered to be safe on Day 2. Let 𝑆2 denote the set. So, 𝑆2 =

(𝑁1 ⋃ 𝐷1)𝑐
. Let 𝑊1 = {𝐼1(𝑥1𝑖, 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝑆2} and 𝑊2 = {𝐼2(𝑥1𝑖, 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝑆2} 

be the MFL data from Day 1 and 2 respectively on these safe points. Again, as 𝑊2 is noisy so we 

fit a linear model say 𝑊2𝑘 and consider the predicted values based on the least square coeffi-

cients as 𝑊2
𝑃. Hence by projecting on day 1 data, we have denoised and sort of linearized 𝑍2

𝑃 and 

𝑊2
𝑃. So, the MFL value in Day 2 for all scan points other than the neighborhood points are well 

regularized by this transfer learning approach. Let 𝑈2 denote the set of Day 2 MFL values in the 

neighborhood points 𝑁1 i.e 𝑈2 = {𝐼2(𝑥1𝑖, 𝑥2𝑗): (𝑥1𝑖, 𝑥2𝑗)  ∈  𝑁1}. We now fit a mixture regres-

sion model with 2 groups on {𝑍2
𝑃, 𝑊2

𝑃, 𝑈2} response values. As the proportion of points in 

(𝑆2 ⋃ 𝐷1) is much higher than 𝑁1points, we have much more denoised points in {𝑍2
𝑃, 𝑊2

𝑃, 𝑈2} 

than noisy points. Hence, a mixture regression model, can’t be fitted accurately before. Using the 

model which is basically trained by the points in 𝑍2
𝑃 and 𝑊2

𝑃., we look at the posterior of points 

in 𝑁2 and classify them as safe or defect. So, the 𝐷2 defect area is : 𝐷2 = 𝐷1 ⋃{((𝑥1𝑖, 𝑥2𝑗)  ∈

 𝑁1: 𝜋2
𝐷̂((𝑥1𝑖, 𝑥2𝑗)  ≥ 0.8}.  

 

Similarly, for Day 3, we consider the neighborhood 𝑁2 of the defective area 𝐷2 of day 2 and pro-

ceed in similar way as before. 

 



9 

 

In the below figure 9 the green points denote the defect projection from Day 1 to day 2, the yel-

low ones represent the non-defect ones from the day 2 whereas the purple ones are the non-deter-

mined ones which can either be defect or non-defect. 

 

In the Figure 10 (a), the red points show the portion of the defects whereas in figure 10(b) it 

shows that most of the purple points have changed to yellow and some to red, thereby reducing 

the uncertainty.  

 

Figure 12 show if we know the defect size then the arrow marks shows the defects from actual 

data thereby showing the accuracy. 

 

 

Figure 9:Projection of day 1 on day 2 
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Figure 10:  Showing the neighborhood areas with uncertainty reduction 

 

 
Figure 11: Comparison with actual data 

 

The same process is conducted for the later days too. 

 

However, when the defects are interacting among each other, formerly the mixture regression 

will not function properly as here the variance 𝜎𝑘
2 is in the form of identity matrix. But when two 

or more defects are interacting with each other then 𝜎𝑘
2 will not be an identity one as there will be 

co-relation among the defects. Hence for studying the interaction we have to formulate our algo-

rithm as a function of distance and that’s where kriging comes into play.  

 

• Regression Kriging [7]: RK is a spatial prediction technique that combines a regression 

of the dependent variable on auxiliary variables with kriging of the regression residuals. 

It is basically the interpolation method called kriging, where auxiliary predictors are used 

directly to solve the kriging weights. 

• Kriging or Gaussian process regression is a method where the interpolated values are 

modelled by a Gaussian process governed by prior covariance. 
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• The main idea behind kriging is to predict the value of a function at a given point by 

computing a weighted average of the known values of the function in the neighborhood. 

• In our model also, if two grid points are close, the difference in average flux for them in 

the model is not huge. Thus, spatial relation among points are leveraged and hence due to 

this spatial contiguity kriging can be applied. 

• Kriging is basically a form of Bayesian inference where it starts with prior distribution of 

functions. The prior takes the form of a Gaussian process, where the samples from the 

function will be normally distributed and the covariance between any two samples is the 

covariance function of the Gaussian process evaluated at the spatial location of two 

points. 

• Now, a new value can be predicted at any new spatial location, by combining the Gauss-

ian prior with a Gaussian likelihood function for each of the observed values. The result-

ing posterior distribution is also Gaussian, with a mean and covariance that can be simply 

computed from the observed values, their variance, and the kernel matrix derived from 

the prior. 

• The main objective is to produce conditional simulations and compare their variability. 

The final outcome will be the relevant prediction and uncertainty evaluation. 

• Here the two-dimensional coordinates on a grid will be considered. 

• Theory of Random Fields: There are some processes that operate over an entire region of 

interest. These can lead to regional trends, where an attribute can be modeled as a func-

tion of the geographic coordinates. However, the regional trend often does not explain all 

the variation. One must focus on local spatial dependence to determine processes that af-

fect the neighborhood. There is a deterministic local process that causes nearby points to 

be alike [8, 9]. 

• The basic difference between the kriging and mixture regression is as follows: In mixture 

regression the variance is an identity matrix but for kriging after finding the trend of 

mean, we have to find out 𝜎, the error correlation as if the threats are interacting then the 

𝜎 will not be an identity matrix. 

• Key idea that nearby observations may be correlated is incorporated here. 

• Just like any other variables, the set of random variables making up the regionalized vari-

able may have covariance, i.e. one may be related to another (positively or negatively). 

• Now each point being a different realization, hence they are different variables hence 

they must have a covariance. 

• Under certain assumptions, this covariance can be considered to depend only on separa-

tion between the point’s key insight in local spatial dependence. 

• Hence Kriging is utilized for mapping of surfaces from limited sample data from the esti-

mation of values at unsampled locations.  This is analogous in predicting the interaction 

of the defects, where we know the defect locations which can be treated as sampled 

points and predicting their interaction can be treated as unsampled points in spatial do-

main. There are several build-in packages in R which converts our data to spatial domain.  

• A semi-variogram models the difference between a value at one location and the value at 

another location according to the distance and direction between them. 

• In ordinary kriging a weighted average of neighboring samples is used to estimate the 

‘unknown’ value at a given location where the weights are being optimized using a vario-

gram model. 
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• Say, the realization of a variable 𝑍 at spatial locations(s) can be considered as the result 

of three distinct processes:  𝑍(𝑠)  =  𝑚(𝑠)  +  𝐸`(𝑠)  +  𝐸”  where  𝑚 is the regional 

trend, 𝐸` a spatially correlated stochastic process and 𝐸” is the noise which is neither 

spatially-correlated nor deterministic. 

 

Steps for implementing Kriging: 

 

• First, we have to load the dataset in the form of data frame. 

• Convert the data frame into spatial points data frame. 

• Fit a variogram model to the data. 

• Perform Interpolation. It is basically the step to estimate values at points we don’t have 

measurements for based on the points for which we do have measurements. Hence, we 

need two spatial domains, one having values associated with the points, and one for 

which we want estimates. 

• Finally, Kriging is to be performed. 

 

1.2 Modelling of Pulsed eddy current inspection  

 

Conventional eddy current techniques have been used to a great extent for detection of surface 

breaking defects in conductive materials. However, detection of sub-surface defects is limited 

due to the single frequency and skin effect phenomena. Pulsed Eddy Current (PEC) techniques 

excite the probe's driving coil with a repetitive broadband pulse, usually a square wave. The re-

sulting transient current through the coil induces transient eddy currents in the test piece, these 

pulses consist of a broad frequency spectrum, and the reflected signal contains important depth 

information. As an alternative technique to conventional eddy current NDT, pulse eddy currents 

(PEC) is employed which is usually excited by means of a non-sinusoidal coil current.  

 

As with conventional eddy current, a nearby sample and geometrical properties - such as conduc-

tivity, magnetic permeability, size and shape - affect measured transient eddy current signals. 

However, in the Fourier sense, transient signals are far richer in information than are their con-

ventional single-frequency counterparts, since they contain the sample’s response to an infinite 

set of frequencies. Furthermore, transient excitations may be tailored to contain a particular dis-

tribution of frequencies with the potential of enhancing sensitivity to specific features, such as 

material thickness, liftoff distance and material defects. It has been determined that, in contrast to 

conventional eddy current signals, the presence of ferromagnetic materials may enhance flaw de-

tection rather than impair it. In most systems, a steady state current is allowed to persist for some 

time before the waveform repeats. The steady state period is made sufficiently long so that all 

eddy currents have completely decayed away to undetectable levels. This is also important when 

we integrate PEC with MFL. 

 

Finite Element Modelling (FEM) of PEC 

 

Model definition 
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For FEM of PEC technique, COMSOL Multiphysics 5.3a [10]has been adopted. In this study, 

symmetrical probes and defects have been considered. The problem has been assumed to be lin-

ear to further reduce the computational complexity. The boundary of internal structure is set to 

Dirichlet condition while external boundaries of the model are set to Neumann condition on the 

magnetic field. The problem domain is discretized using triangular elements and the governing 

equation below is solved by applying the above-mentioned boundary conditions. 

 

                        ∇ × (
1

𝜇
∇ × 𝐴) = −𝜎

𝜕𝐴⃗

𝜕𝑡
− ∇𝜎𝑉 + 𝐽𝑆           (5) 

 

where 𝐴 is the magnetic vector potential in Vs/m, 𝑉 is the electric scalar potential in volts, 𝜇 rep-

resents the magnetic permeability in H/m, 𝜎 is the electric conductivity in S/m and 𝐽𝑆 is the 

source current density in 𝐴/𝑚2. The problem is considered as linear if 𝜇 is assumed to be con-

stant in the range of operating frequencies (<100 kHz) and excitation current (<1 A). The prob-

lem is solved using transient time stepping mode Direct linear solver. A typical driver-receiver 

PEC probe consists of a primary coil, a secondary coil and a ferromagnetic core. Here for sim-

plicity and compatibility, ferromagnetic core is replaced with an air core. The primary coil re-

ceives the AC electrical input signal from external circuit. As a result of mutual induction, an in-

duced voltage is obtained across the secondary coil. 

 

The model assumes that the primary and secondary windings are made of thin wire and have 

multiple turns. Using the assumptions that the wire diameter is less than the skin depth and that 

there are many turns, these windings are modeled with Coil features. Furthermore, the model 

does not account for eddy currents in the individual turns of the coil. The primary winding is 

connected to a resistor 𝑅𝑃 and the voltage source while the secondary winding is connected to 

the secondary load resistor, 𝑅𝑠 as shown in Fig.12 

 
Figure 122: PEC probe with primary coil connected to an external circuit with voltage source 

and resistor, secondary coil connected to another resistor. 

 

 

1.3 PEC Model Principle [11] 

 

According to Biot-Savart law, the magnetic flux density of an arbitrary point 𝑃 produced by a 

current that flows along line 𝐶 is integral of the magnetic flux density 𝑑𝐵 produced by an ele-

mentary current 𝐼𝑑𝑠.  
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𝑑𝐵 =
𝜇0

4𝜋
∙

𝐼𝑑𝑠 × 𝑟

𝑟3
 

 
Figure 13: Elementary current along C and observation point P 

 

                                      𝐵(𝑟) =
𝜇0

4𝜋
∙ ∫

𝐼𝑑𝑠×𝑟

𝑟3                              (6) 

 

In this way, square circuit with uniform current 𝐼, width 𝑑 will produce the magnetic flux 𝐵 at a 

distance 𝑧 from the circuit surface.  

 

                            𝐵(𝑧) =
𝜇0𝐼

4𝜋
∙

𝑑

√𝑧2+
𝑑2

2
√𝑧2+

𝑑2

4

                  (7) 

 
Time varying current in primary coil will produce a time varying magnetic flux 𝐵𝑃 which in turn 

induce eddy current in the material, and then the induced eddy current will generate the second-

ary magnetic field 𝐵𝑆. The total magnetic field will form an electric field E in the material, ex-

plained by the fundamental Maxwell’s Equations: 

 

                         ∇ × 𝐸 = −
𝜕(𝐵𝑃+𝐵𝑆)

𝜕𝑡
                (8) 

𝐽 =  𝜎𝐸 

 

where 𝜎 is conductivity of the material. On the other hand, the induced current in the secondary 

coil is defined as 𝐽𝑆 

 

                                   ∇ × 𝐽𝑆 =  −𝜎
𝜕(𝐵𝑃+𝐵𝑆)

𝜕𝑡
                         (9) 

 

Then the secondary magnetic field can be further defined as follows 

 

Time Varing 
current in 

primary coil 𝐼𝑃
which in turn 
produce 𝐵𝑃

Time Varing 
magnetic flux 
produced by 

𝐵𝑃 at 
secondary coil 

𝐵𝑆

Induced 
current of 

secondary coil 
𝐼𝑆 produced by 

𝐵𝑆

Induced eddy 
current on 

material under 
test (MUT) 

produced by 
𝐵𝑆𝑀 and 𝐵𝑃𝑀

Secondary 
field 𝐵𝑀

created by 
induced eddy 

current on 
MUT
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∇ × 𝐵𝑆 =  𝜇𝑐𝑜𝑖𝑙𝐽𝑆 

                                        𝜙𝑆 = ∫ 𝐵𝑆 𝑑𝑠                                 (10) 

 

Model setup and simulation results 

 

 
 

Figure 14: Schematic of PEC probe and MUT with center cubic defect 

 

Primary 

coil 

Secondary coil 

coilvv 

Defect case: center cubic crack 

coilvv 

Secondary coil 

coilvv 

Primary 

coil 
Defect case: center cubic crack 

coilvv 
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The 3-D FEM simulations are conducted by COMSOL. The simulation models of PEC coils are 

shown in Figure above. Here, the winding directions of primary (excitation) coil and secondary 

coil are clockwise. The electromagnetic parameters and structure parameters of the simulation 

models are listed in Table below 

 

Quantity Value 

Depth of steel  10 mm 

Thickness of PEC coils 2mm 

Length of primary coil 20mm 

Length of secondary coil 18mm 

Width of primary coil 2mm 

Width of secondary coil 2mm 

Lift-off  3mm 

Primary coil turns 100 

Secondary coil turns 100 

  

Both non-defect and defect cases are considered. During simulation, size and location of the de-

fect are set as variables. MUT studied here is Q235 steel and the incremental permeability has a 

nonlinear property, as the B-H and H-B curve shown in Fig. 15.  

 

 
 

Figure 15: BH and HB curve of the sample 

 

Fig.16 shows the time-domain waveform of the pulse-excited current with direction the same as 

the winding direction of the primary coil. The excitation time is set from 0 to 10 𝜇𝑠 , and the 

pulse width is set to be 2.5 𝜇𝑠. Durations of rising edge and falling edge are set to 100 ns. 
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Figure 16: Pulsed signal 

 

For time-dependent study, non-defect case is firstly analyzed. Discretized time-based observation 

regarding induced current density of MUT upper surface is made during 𝑡 = 0 to 𝑡 = 10 𝜇𝑠 with 

step size of 0.1 𝜇𝑠 at beginning phase. 
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Figure 17: Densities and distribution patterns of induced current at upper surface of MUT be-

tween t= 0𝜇𝑠and t= 10𝜇𝑠 

 

Density of induced current increase rapidly at the beginning due to the magnetic field produced 

by pulsed signal while decays very slow. Even at t= 10𝜇𝑠 when pulsed signal has ceased to 0 for 

7 𝜇𝑠, current density still remains significant. By placing 3 imaginary sensors (geometry of the 

sensor won’t affect simulation) at the center of MUT with lift-off of 1mm,2mm and 3mm respec-

tively. 𝐵𝑧 is measured across three domain points. 

 
 

Figure 18: Magnetic flux density with lift-off 1mm,2mm and 3mm 

 

By implementing simulation at a much larger time domain (100 times longer than original in-

spection), decrease in magnetic flux density along z direction at three locations are observed. As 

illustrated in figure below, decay rate is much lower which will significantly affect induced sig-

nal at secondary coil from MFL+PEC model. 
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Figure 19: Magnetic flux density with lift-off 1mm,2mm and 3mm during 0 to 1000 microseconds 

 

Modelling of PEC + MFL on comprehensive inspection 

 

Similar to PEC setting, PEC+MFL also adopt a square wave excitation of one coil (primary coil) 

to induce a transient response from electromagnetic field interactions deep within the conducting 

structures[12]. Our present work investigates output signal of secondary coil which indicate sum-

mation of magnetic field produced by both magnets and excitation coil.  

 

 
 

Figure 20: Schematic of PEC + MFL probe and MUT with no defect 
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New sensing model enable us to do faster inspection with deeper signal penetration depth as well 

as higher sensitivity and linearity. The core physics principle of our PEC + MFL model is detect 

and identify conductivity-dependent and permeability-dependent distribution pattern due to the 

presence of defect. However, when we compare two groups of results with first group by PEC 

only, second group by MFL+PEC, little difference is observed. Both groups present induced 

voltage value in the secondary coil and differential voltage calculated by subtracting secondary 

voltage from primary one. 

 

 
 

Figure 21: Induced voltage of secondary coil and differential voltage in PEC model 

 

 

 
 

Figure 22:  Induced voltage of secondary coil and differential voltage in PEC+MFL model 
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Figure 23: Magnetic flux density of sample surface during 0 to 10ms 

 

In the experiment, we reset pulsed signal as 0 and keep MFL device functioning normally and 

place an imaginary sensor to measure intensity of magnetic flux on the upper surface of MUT. 

As illustrated in the figure, intensity value reaches its peak at 4.3ms which is much larger than 

time domain adopted for PEC. Thus, compatibility can be guaranteed if we get feedback from 

MFL and PEC separately in the time-dependent study. 

 

2. Progress on Task 2.2: Spatiotemporal matching of interacting threats 

 

In this subtask, we complete the spatiotemporal matching algorithm to identify the corresponding 

interacting thread appearing in different times. We propose to use graph matching based method 

to implement this goal. 

 

For graph matching, [13] identified point correspondence by exploring principal eigenvector of 

the affine matrix. [14] searched correspondence through factorizing a large affine matrix into 

smaller matrices that encode local relationships. [15] solved the non-convex point association 

problem using a random walk algorithm.[16]developed a path following method to solve the op-

timization. Compact-ness prior was used to improve matching [17]. 

 

2.1 Approach 

In our proposed method, we do not just use spatial relationship constructed by nodes in graphs, 

but also take the appearance feature of each node into account to identify the correspondences of 

nodes in two different graphs. In the following, we denote matrices by boldface, capital letters 

B={𝑏𝑖𝑗} ∈𝑅𝑛𝑥𝑚, we define its i-th row as 𝑏𝑖 and vectors by lowercase letters 𝑣 . 

 

Given a pair of images of the same place but taken at different times, the information extracted 

from these two images are denoted as two graphs G= (V,E,C) and G’= (V’,E’,C’). Take graph G 

as an example, defect position set is denoted as V=[𝒗𝟏, 𝒗𝟐, . . . , 𝒗𝒏] ∈ 𝑅2𝑥𝑛 which contains all 

the positions of detected defects, where 𝒗𝒊= [𝑥𝑖, 𝑦𝑖]
𝑇, i=1,2,· · ·, n represents the central position 

of i-th defect in image coordinate and n is the number of defects in the image. Edge set E= 
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E=[𝑒1, 𝑒2, . . . , 𝑒𝑚] ∈ 𝑅𝑧𝑥𝑚, for a pairwise edge 𝑒𝑝= [𝑣𝑖,𝑣𝑗], p= 1,2,· · ·, m and 𝑣𝑖𝑣𝑗∈V. The at-

tribute set C including all the features of defect denoted as C= [𝑐1
𝑇 , 𝑐2

𝑇 , . . . , 𝑐𝑛
𝑇]𝑇∈𝑅𝑛𝑥𝑑, where 𝑐𝑖

𝑇 

is a feature vector obtained from the i-th defect in the image. 

 

Based on position set V and edge set E, we can calculate the spatial relationships of the land-

marks by Eq.(11), denoting as P={𝑝𝑖𝑗 } ∈𝑅𝑛𝑥𝑛, i≠j for pairwise edge and dis() function is to 

calculate the length of edge. Based on C and C’, we can obtain appearance similarity matrix 

B={𝑏𝑖𝑗 } ∈𝑅𝑛𝑥𝑛, where 𝑏𝑖𝑗 = cos<𝑐𝑖 ,𝑐′𝑗 >, matrix B and P are explained in Figures 24 and 25. 

 

                                         𝑝𝑖𝑗 = 𝑒𝑥𝑝 (𝛾||𝑑𝑖𝑠(𝑒𝑖) − 𝑑𝑖𝑠(𝑒′𝑗)||2)                                     (11) 

 

 
Figure 24:  Edge similarity matrix P 

 

 
Figure 25:  Node appearance similarity matrix B 

 

 

Finally, the matching formulation is defined as following: 

 

                   𝑋 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥(∑𝑛𝑛′
𝑖𝑖′  ∑𝑛𝑛′

𝑗𝑗′′ 𝑝𝑖𝑖′,𝑗𝑗′𝑥𝑖𝑖′′𝑥𝑗𝑗′′  + ∑𝑛𝑛′
𝑖𝑖′′ 𝑏𝑖𝑖′′,𝑗𝑗′)            (12) 
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We can rewrite Eq.(12) into matrix form as following: 

 

                        𝑋 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑋𝑇𝑃𝑋 + 𝐵𝑇𝑋)                                     (13) 

 

The first term is to calculate the spatial disparity between two graphs, the second term is to calcu-

late the similarity of defect appearances (like shape) between two graphs. The matrix X is the final 

corresponding matrix which encodes the correspondences of nodes in two graphs, as shown in the 

following figure. 

 

 

 
 

Figure 26:  Corresponding matrix X 

 

 

 

2.2 Optimization 

 
 

Figure 27:  Comparison-1 for solver performance   
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Figure 28:  Comparison-2 for solver performance 

 

Since getting the solution to formulation in Eq.(13) is NP-hard [14], there are many research try 

to solve it through different ways, based on the performance shown in Fig 4 [14], we develop a 

new solver based on RRWM [15] to solve the formulation in Eq.(13).  The algorithm is as follow-

ing: 

 

______________________________________________________________________________ 

Algorithm1: An algorithm to solve the formulated optimization problem in Eq.(3) 

______________________________________________________________________________ 

Input: P and B 

Output: X 

 

1. Initialize the correspondence matrix X 

2. Computer M according to Eq.(14) 

3. while not converge do 

4.        | Update X by Eq.(15) 

5.        | Computer the jump vector Z by Eq.(16) 

6.        | Normalize Z using bistochastic normalization 

7.        | Update X with reweighted jump by Eq.(17) 

8. end 

9. Discretize X using Hungarian Algorithm 

10. Return X 

______________________________________________________________________________ 

 

 

𝑚𝑖𝑖′,𝑗𝑗′ = 𝑝𝑖𝑖′,𝑗𝑗′/𝑋𝑇𝑃𝑋    (14) 

 

In step 2 in algorithm 1, we convert the original similarity matrix to probabilistic form as shown 

in Eq.(14), and then update X by: 

 

𝑋𝑟+1 = (𝑋𝑇)𝑟𝑀(𝑋)𝑟    (15) 

 

In order to jump out local optima, we implement a reweighting jump vector Z as : 

 

𝑍 = 𝑒𝑥𝑝(𝑋￮𝐵/𝑚𝑎𝑥(𝑋￮𝐵))    (16) 

 

where ◦ denotes the entrywise product. The node appearance similarity B is used to guide the 

jump toward a direction that can better matches similar objects. 

 

Step 6 employs a bistochastic normalization to normalize each row and column in Z, thus enforc-

ing the one-to-one correspondence. Then, in Step 7, to facilitate X to jump out of local optima, X 

is updated by: 

 

𝑋𝑟+1 = (𝑋𝑇)𝑟𝑀(𝑋)𝑟  + (1 + 𝛼)𝑍    (17) 
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where α is a hyper-parameter that controls the update rate. Since X is computed using real-valued 

numbers in 𝑅𝑛𝑥𝑛, in Step 9 after convergence, we discretize it to obtain a binary matrix X ∈ {0, 

1}𝑛𝑥𝑛 using the Hungarian algorithm. 

 

3. Summary and Future Work 

 

For task 1.2, we have applied the mixture regression model along with transfer learning for mon-

itoring the growth of single defects. We have implemented the data analysis on the magnetic flux 

densities obtained by running MFL simulations in CMOSOL as in presence of defects there will 

be perturbation in magnetic fields which are captured by magnetic sensors (domain probes) in 

simulation. At first, we have applied our mixture regression model (cluster K=2, defect and non-

defect cluster) on the obtained magnetic field flux data that is not infected by noise. Points with 

posterior probabilities greater than 0.8 are considered in defect area.  There we are successful in 

identifying and reconstructing the defect area. After that we have randomly increased the size of 

the defects (stochastically) and have added noise such that the wavelets failed to denoise them. 

Now on these noisy data mixture regression fails as shown earlier. Hence, we are transferring 

mixture regression model from noiseless data to transfer the locations and size of the defect. We 

classify the neighbors based on the noiseless data and thereby accurately predicted the defect 

growth on the noisy data. We have successfully predicted the growth of defect as shown in the 

above figures thereby reducing the un-certainty and increasing the accuracy. However, when the 

defects are interacting with each other then, to study the interaction among the defects and how 

they are spreading we have presented here a brief overview of kriging as there will be correlation 

among the threats while in interaction. In simulation part, PEC is studied first in terms of COM-

SOL based simulation. Excitation sources are given by external circuit which enable us to imple-

ment more complex input signals. Moreover, compatibility of PEC and MFL is verified by ob-

servation in the time-dependent study of magnetic flux leakage. In the future, we will study more 

comprehensive feedback signal from MFL and PEC simulations regarding spatial dependence of 

the threats. Postprocessing methods such as Kriging will be applied on the interaction in next 

quarter. As to task 2.2, we implement a pairwise graph matching method to find the correspond-

ences between objects in different images, which consider both appearance feature and spatial 

relationship, so that to mimic the situation of identifying spatiotemporal defects. In order to eval-

uate our proposed algorithm, we collect our own dataset which used multiple different robots to 

represent defect. Based on our experimental result, we found that even if there exist view change 

or spatial deformation, our method can still find the correspondences of objects between a pair of 

images.  

 

In the next quarter, we continue making progress and completing the research tasks including 

tasks 1.2 and 2.2, following the project schedule included in the approved proposal. We will also 

focus on collecting data of interacting threats and apply the developed methods on the collected 

dataset. To promote education, we will continue involving PhD, Master’s, and undergraduate 

students from our research groups in the project, and advise them to improve their research skills 

as the project continues. 
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based Kriging Approximation Algorithms for Complexity Reduction. 

[10]  5.2, C., AC/DC Module User’s Guide.  

[11] Huang, S. and S. Wang, The Pulsed Eddy Current Testing, in New Technologies in 

Electromagnetic Non-destructive Testing. 2016. p. 41-80. 

[12] Piao, G., et al., A novel pulsed eddy current method for high-speed pipeline inline 

inspection. Sensors and Actuators A: Physical, 2019. 295: p. 244-258. 

[13]  Leordeanu, Marius, and Martial Hebert. "A spectral technique for correspondence 

problems using pairwise constraints." Tenth IEEE International Conference on Computer 

Vision (ICCV'05) Volume 1. Vol. 2. IEEE, 2005. 

[14]  Zhou, Feng, and Fernando De la Torre. "Factorized graph matching." 2012 IEEE 

Conference on Computer Vision and Pattern Recognition. IEEE, 2012. 

[15]  Cho, Minsu, Jungmin Lee, and Kyoung Mu Lee. "Reweighted random walks for graph 

matching." European conference on Computer vision. Springer, Berlin, Heidelberg, 2010. 

[16]  Liu, Zhi-Yong, and Hong Qiao. "GNCCP—Graduated nonconvexityand concavity 

procedure." IEEE transactions on pattern analysis and machine intelligence 36.6 (2013): 

1258-1267. 

[17]  Suh, Yumin, Kamil Adamczewski, and Kyoung Mu Lee. "Subgraph matching using 

compactness prior for robust feature correspondence." Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition. 2015. 

 


